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Abstract 

Background 

Precise description of the dynamics of biological processes would enable the mathematical 
analysis and computational simulation of complex biological phenomena. Languages such as 
Chemical Reaction Networks and Process Algebras cater for the detailed description of 
interactions among individuals and for the simulation and analysis of ensuing behaviors of 
populations. However, often knowledge of such interactions is lacking or not available. Yet 
complete oblivion to the environment would make the description of any biological process 
vacuous. Here we present a language for describing population dynamics that abstracts away 
detailed interaction among individuals, yet captures in broad terms the effect of the changing 
environment, based on environment-dependent Stochastic Tree Grammars (eSTG). It is 
comprised of a set of stochastic tree grammar transition rules, which are context-free and as 
such abstract away specific interactions among individuals. Transition rule probabilities and 
rates, however, can depend on global parameters such as population size, generation count, 
and elapsed time. 

Results 

We show that eSTGs conveniently describe population dynamics at multiple levels including 
cellular dynamics, tissue development and niches of organisms. Notably, we show the 
utilization of eSTG for cases in which the dynamics is regulated by environmental factors, 
which affect the fate and rate of decisions of the different species. eSTGs are lineage 
grammars, in the sense that execution of an eSTG program generates the corresponding 



lineage trees, which can be used to analyze the evolutionary and developmental history of the 
biological system under investigation. These lineage trees contain a representation of the 
entire events history of the system, including the dynamics that led to the existing as well as 
to the extinct individuals. 

Conclusions 

We conclude that our suggested formalism can be used to easily specify, simulate and 
analyze complex biological systems, and supports modular description of local biological 
dynamics that can be later used as “black boxes” in a larger scope, thus enabling a gradual 
and hierarchical definition and simulation of complex biological systems. The simple, yet 
robust formalism enables to target a broad class of stochastic dynamic behaviors, especially 
those that can be modeled using global environmental feedback regulation rather than direct 
interaction between individuals. 

Background 

In recent years there has been a great interest in modeling and simulating various aspects of 
population dynamics in biological and ecological systems [1-4]. The increasing 
computational resources along with a deeper understanding of biological and ecological 
phenomena have led to the development of many languages for describing, analyzing and 
simulating concurrent stochastic processes. Many such languages specify Markovian 
dynamics and differ by level of abstraction, ease and complexity of the description and 
execution efficiency [5]. Two widely used formalisms are based on Chemical Reaction 
Networks (CRN) [6] and stochastic Process Algebras (PA) [7]. 

CRNs were originally used to describe chemical systems. A CRN description consists of a 
finite set of reactions acting on a finite number of species. Each reaction specifies the identity 
and stoichiometry of the reactants and products along with a rate constant. Many processes 
can be described using CRNs, for example, Predator-Prey models [8], Cellular cascade 
pathways [9], Cancer progression [10], Epidemics dynamics [11], and many others [1]. Each 
of these processes consists of a continuous interaction between individual species (the 
reactants) that occurs at a certain rate and produces a group of other individuals (the products, 
which may be empty) that can be of the same (autocatalytic) or of different type. The 
description of dynamical systems using CRN is relatively simple and can be used both for 
analytical solving and simulations. However, this approach neglects biological aspects of the 
described systems by treating each object (reactant or product) as a simple entity, which 
ignores its environmental context and structure. For example, many molecular objects 
maintain their overall identity while changing in specific attributes, such as chemical 
modification or location. When using a CRN abstraction such molecules cannot retain 
identity while changing state. 

PAs, on the other hand, are a family of mathematical formalisms that were originally 
developed to model concurrent computer systems. They enable the abstraction and 
specification of communication and synchronization between a collection of processes by 
passing messages between them. One of the most well studied PA is the π -calculus, which 
has been shown to be very useful in describing a range of biological systems [7,12]. The 
language consists of processes that are mapped to real-world objects, and channels, which are 
mapped to communications and interactions between the different objects. A unique feature 



of the π -calculus allows to dynamically communicate new channels between the processes 
(this is termed mobility), which enables the objects to keep their identity while changing their 
internal states or interactions with other objects. This feature is more compatible with real 
biological and ecological scenarios and fits well to the way we think and observe these 
processes. It also allows one to abstract and specify the dynamics in a more accurate fashion. 
It has also been shown that this abstraction can be treated as an executable computer 
program, allowing to stochastically simulate any specified model [13]. 

Many tools have been developed in order to allow and simplify the use of mathematical 
modeling for the life-science community, and each one has its strengths and weaknesses [14-
16]. There is no single formalism that has all the required features and choosing the 
appropriate one depends on the specific goals and resources of the modeler. Our goal in this 
work is to develop and formulate a simpler and practical tool for modeling and simulating the 
behavior and interaction of populations. We do so by extending the notion of Stochastic Tree 
Grammar (STG) [17] by incorporating both rates and probabilities to the transition rules. 
These can be dynamically updated by defining them as functions of the system’s state, which 
includes global values such as current population size, generation count or elapsed time. In 
addition, we extend the system by allowing each individual to hold its own internal states 
which can change through inheritance. We later discuss implementation of stochastic 
simulation and the relation to Ordinary Differential Equations (ODE). 

A prominent feature of the language is that it enables to stochastically produce possible 
lineage trees corresponding to single executions. These lineage trees contain a representation 
of the entire events history of the process, including the dynamics that led to the existing as 
well as to the extinct individuals. As opposed to standard approaches that output only the 
population size dynamics, our implementation also outputs the corresponding lineage trees, 
which can be used to analyze the evolutionary and developmental history of the process. 

Recently, Vaughan et al. [16] presented the usage of CRNs as lineage grammars and used 
them to simulate phylogenetic trees. Although they enable to sample possible genealogies 
based on the defined reaction rules, they do not allow the specification and analysis of more 
complex behaviors such as feedback onto the dynamic rates and general inherited properties. 

Throughout the paper, we demonstrate the usability of the language by presenting a wide 
range of examples that can be modeled and simulated using this approach. The examples 
show that the language can provide simple descriptions of systems from various domains. 
Example parameter values were taken from the literature when available or chosen arbitrarily 
in order to simplify the presentation. 

Results and discussion 

eSTG programs 

Following is an example of an eSTG program for stem-cell differentiation [18]: 
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In this example, SC (stem cells) divide symmetrically 0.1 times per day, while self-renewing 
or differentiating with the same probability (50%), and Diff (differentiated cells) can once a 
day either proliferate (with probability 49%) or die (with probability 51%). 

Alternatively, one can define an average time to event t instead of a rate, which can be 

translated interchangeably into a rate using 
1

r
t

= . The above rules are then written: 
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An execution of an eSTG program proceeds through the stochastic application of its 
transition rules on its state. An example execution of the program, on an initial 10 SC and 5 
Diff, can be summarized by a cell lineage tree and population size graphs shown in Figure 1B 
and Figure 1C. In addition to single executions, eSTG can also be used for obtaining overall 
population statistics, for example, to calculate the average population size over time (Figure 
1D) and the distribution of clone sizes (Figure 1E). 

Figure 1 An example of the stem cell differentiation program execution. The program 
was executed up to simulation time 100 days. (A) Schematic representation of the eSTG rules 
(without rates and probabilities). (B) Population size over time of a specific execution. (C) 
Cell lineage tree of a specific execution (only one cell lineage tree out of the originating SCs 
and Diffs is shown). (D) Average population size over time (calculated from 1000 stochastic 
executions). (E) Clone size distribution, which is the final population size derived from each 
initiating individual (calculated from 1000 stochastic executions). 

Following is another example of an eSTG program for the Luria–Delbrück Model [19]: 
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In this model, wild-type bacteria (WT) are randomly mutated (in the absence of selection) to 
form a resistant bacteria (MUT), thus the population size of mutated bacteria varies 
dramatically and is dependent on the timing in which the mutation has happened. Figure 2B 
and Figure 2C show specific executions of typical and rare lineage trees. Averaging over 
many executions can yield average population size (Figure 2D) and clone size distribution 
(Figure 2E). 



Figure 2 An example of the Luria–Delbrück program execution. The program was 
executed from 1 WT to 100 cells. (A) Schematic representation of the eSTG rules. (B) 
Typical lineage tree execution where mutations do not occur early. (C) Rare lineage tree 
execution where a mutation occurs early. (D) Average population size over time (calculated 
from 1000 stochastic executions). (E) Clone size distribution (calculated from 1000 
stochastic executions). In the rare events where the mutation happens early in the lineage, the 
clone size of the mutated population is large. 

Internal states 

We define internal states for each species as a vector of variables that can change, either 
deterministically or stochastically for each individual, with every execution of a rule. Internal 
states can be used to model inherited attributes, such as mutations or substance accumulation, 
or record historical events such as the number of generations, number of 
symmetrical/asymmetrical divisions, or time since historical events. We thus extend the basic 
rules defined above to include internal states which are functions of the predecessor’s internal 
states. For example, extending the previous stem-cell differentiation scenario: 
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In this example, we define a vector of n variables ��������� � ����, …��)�, which correspond to 
the number of repeats in n Microsatellite (MS) loci in the DNA [20]. In every cell division, 
the number of MS repeats for each locus changes according to the stochastic function fMS, 
which can cause either a decrease or an increase of one repeat with probability p [21]: 
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This simulated data can be used for example to evaluate the relationship between n, the 
number of MS, and the accuracy of phylogenetic reconstruction based on MS lengths of the 
tree (see [22,23] for details). 

Another example for the use of internal states is the following program, which counts the 
number of generations since each differentiation event: 

{ } { }

( ) ( ) ( ){ } { }

10 

0.5 0.5

1 

0.510.49

, | ( 1), ( 1)

1 , 1 |

days

day

SC SC SC Diff Gen Diff Gen

Diff Gen x Diff Gen x Diff Gen x φ

→ = =

= → = + = +
 

Figure 3 shows various distribution statistics of the internal state Gen over the population at 
different time points. 



Figure 3 An example of generation counter internal state. Each species of the type holds 
an internal state called Gen which holds the number of cell divisions since the differentiation 
event. The histogram of the values over the entire population can be calculated at different 
time points (e.g. after 10, 50 and 100 days, shown in (A), (B) and (C) respectively). 

Other examples of internal states can be the counting of historical events (such as how many 
symmetric vs. asymmetric divisions a cell went through) or measuring the time since a 
certain event. 

Probabilities and rates as functions 

Population dynamics can change based on various conditions such as population size, internal 
or external changes, and elapsed time. A common phenomenon in population dynamics is the 
reaching of a homeostasis, meaning that at a certain point, the population size reaches a 
steady state. 

A simple example is the growth of a species until reaching a target size. Consider the 
following parametric rule: 
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Without feedback regulation on the population size, a setting of * � �
+ results in an extinction 

with probability 1 [24]. A simple regulation scheme is the logistic model [25]: 
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where N is the population size, r is the growth rate and K is the target size (also termed 
carrying capacity). We can use the above parametric eSTG rule to model a logistic population 
growth by solving: 
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For simplicity, r in the eSTG rule is the same as the r in the logistic model. 

We then get: 
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Figure 4B and Figure 4C show the resulting dynamics (population size and lineage tree) 
starting from a single A of the following program (setting K = 100): 



Figure 4 An example of dynamic population growth. An example of a simple proliferation 
with fate probabilities and rates that are functions of the population size. (A) Schematic 
representation of the eSTG rules. (B) Population size over time of a logistic growth starting 
from a single instance. (C) The corresponding lineage representation of the specific 
execution. (D) Population size over time of a production-removal growth starting from a 
single instance. (E) The corresponding lineage representation of the specific execution. 
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In a different scenario, the growth is also regulated by the rate but is leading to the same 
steady state. Using the following production-removal equation [26]: 

dN
N

dt
β α= −  

we can model the dynamics using the parametric eSTG by solving: 
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The steady state of this system is 
5
6 and for simplicity we limit p to be either 0 or 1, and set α 

= 1, β = 100. We thus define the following eSTG program: 
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Here, the rate is inversely dependent on the population size and the population is growing 
until reaching the steady state that is maintained by a feedback on p, which causes either a 
proliferation (p = 1) or death (p = 0). Figure 4D and Figure 4E show the resulting dynamics 
starting from a single A. 

Another interesting scenario is described in [27], where an optimal development of the 
intestinal crypts is analysed. In the first stage, stem-cells are quickly amplified using self-
replicating symmetric divisions, and after reaching the target size they differentiate 
asymmetrically into stem-cells and differentiated cells. We can describe this scenario using 
the following rules: 
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where |X|Time = t is the population size of species X at time t and |X|Target is the target population 
size of X. Although not described in [27], we continue the scenario with homeostasis by 
solving: 
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We thus extend the program with the following: 

( )

1
1

1 1 2
2

2

| | | |
  | | | |

| |

| | | | | | 1 | |
  | | | |

2

Target
Target

Target
Target

SC SC
p after Diff Diff

SC r

Diff Diff r SC p r Diff
p after Diff Diff

r Diff

−
= =

⋅
− − − +

= =
⋅

 

Figure 5 shows simulation results of a specific execution. 

Figure 5 Rules for optimal development of the crypt. Simulation results of the rules for 
optimal development of the crypt (see main text). The rules are executed with r1 = 1.07, r2 = 
1, |SC|Time = 0 = 1, |Diff |Time = 0 = 0,  |SC|Target = 10, |Diff |Target = 50 (values are taken from 
[27]). Shown are execution results for two time windows starting with one SC. (A) Schematic 
representation of the eSTG rules. (B) Population size for simulation time of 10 days. The 
beginning of the process is shown where the switch between and p1 = 0 occurs at around time 
. (C) The corresponding lineage representation of the specific execution. (D) Population size 
for simulation time of 50 days. Shown is the homeostatic phase that occurs after reaches 
|Diff |Target at around time t = 6. (E) The corresponding lineage representation of the specific 
execution. It is interesting to observe the 10 clones that are maintained by the 10 SCs. 

An example from a different regime is the predator/prey model of Lotka-Volterra [8]. It 
describes the interaction dynamics between two species using two ODEs: 
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where ci are parameters. These equations are usually translated into the following mass action 
kinetic reactions: 
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Since eSTG has only context-free transitions, we convert the second reaction into two 
unimolecular reactions while preserving the 2nd order rate (see Methods for a general method 
to convert CRNs to unimolecular reactions while preserving the same underlined ODEs). The 
new reactions and their rates are described in Table 1. We note that although these new 
reactions are not identical to the original ones, they are still in agreement with the ODEs 
described above. The model can be described using the following parameterized eSTG 
program: 

Table 1 Lotka-Volterra unimolecular representation 
Reaction Global Rate 

2Prey Prey→  1c Prey⋅  

Prey φ→  2c Prey Predator⋅ ⋅  

2Predator Predator→  2c Prey Predator⋅ ⋅  

Predator φ→  3c Predator⋅  
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Figure 6 shows an example execution of the program. 

Figure 6 An example execution of the Lotka-Volterra scheme. An output example of the 
executed program using c1 = 2,  c2 = 0.01, c3 = 5,  |Prey|Time = 0 = |Predator|Time = 0 = 900. (A) 
Population size as a function of time. (B) A lineage tree of one of the 900 originating preys. 
(C) A lineage tree of one of the 900 originating predators. Both (B) and (C) exhibit the 
characteristic bottleneck phenomenon, where most lineages get extinct. 

The role of different feedback strategies on the control of organ and tissue growth can be 
investigated through the rates and probabilities of cellular decisions. Lander et al. [28] 
suggest two types of feedback strategies for the Olfactory Epithelium, one on the rate of 
division and the other on the probability of self-renewal (while keeping a constant division 



rate). They show that a feedback control onto the probability is a much more effective 
strategy for steady-state robustness and rapid regeneration. 

The two strategies can be described using the following eSTG program (�� – stem cells, INP 
- Immediate Neuronal Precursor, IJ3 - olfactory receptor neuron): 
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and the two feedback strategies are implemented by updating the parameters. 

Strategy 1: Feedback onto the probability 

*� � =;
�KL∙|MN.| where is a constant. 

Strategy 2: Feedback onto the rate: 

O� � P;
�KQ∙|MN.| where h is a constant 

Figure 7 shows possible executions generated using the two suggested strategies. 

Figure 7 Scenarios for feedback regulation. (A) Schematic representation of the eSTG 
rules. Left plots - Feedback regulation onto the probability, where population size of an 
example execution, average population size over 1000 executions and an example of a 
lineage tree starting from a single are shown (B,C, and D respectively). Execution started 
with 10 SCs, 0 � 0.506, * � 0.5, 0� � 1, *�UVW � 0.942, @ � 0.0138, ]	 � 	0.0449, 
simulation time: 10. Right plots - Feedback regulation onto the rate, where population size of 
an example execution, average population size over 1000 executions and an example of a 
lineage tree starting from 10 SCs are shown (E,F, and G respectively). Execution started with 
10 SCs and 200 ̂37,	0 � 0.128, * � 0.5, 0� � 1, *�UVW � 0.495, @ � 0.0372, `	 � 	0.0734, 
simulation time: 20 (values are taken from [28]). 

Possible extensions 

Compartments 

In many cases the population moves stochastically between different compartments, where 
each compartment corresponds to a different environment and different resources. Extending 
the language to include compartments allows one to define the same transition rules for 
species from the same type but different rates and probabilities, depending on the physical 
location of the individual. The system’s state is then extended to include the population size 
in each compartment. In addition to the regular transition rules, one also needs to define rules 
for the migration of each species between each two compartments. 



Individual’s probabilities and rates as functions 

Defining probabilities and rates for each individual separately is not recommended due to 
heavy computational requirements when implementing such a scenario, however, an 
extension of the language can support such a definition. In this case we can allow the 
probabilities and rates of each individual to be also dependent on its internal states. This 
allows each individual to have a distinct stochastic value of its probabilities and transition 
rates. For example, we can define a more sophisticated predator/prey model where the 
probability of reproduction is dependent on the individual’s age (or weight) which is 
represented as an internal state, or define the proliferation dynamics of a cell based on its 
mutations (represented as internal states). 

Conclusions 

Stochastic simulation is a powerful tool to execute a complicated modeling system for which 
a closed form analytical solution is not possible. In addition, a simulation can generate a 
sample of representative scenarios that can be used for further analysis or as inputs to other 
programs. The complexity of natural phenomena requires a formal description framework 
which on one hand should be rich enough to capture the complexity and dynamics of the 
system and on the other hand will be compact and simple so it can be widely used by a broad 
community and could be implemented efficiently. There are many systems that are purely 
generative and derive their core results by ignoring interactions (e.g. L-Systems [29] and 
branching processes [24]). Although the assumption of independence enables certain 
analytical techniques, it precludes the ability to model processes and lineages that evolve 
through complex interactions between individuals and their environment. In order to allow 
both generativity and interaction, systems such as PA and CRN are more suitable. As 
described in [3], the trend towards individual-based stochastic models carries many 
advantages; they are easier to construct, more intuitive and can predict richer phenomena than 
population level models. In addition, it is possible to deduce population level conclusions 
(such as the underlined ODEs, see Methods) from the stochastic model. The presented 
formalism does not offer a new modeling approach in the sense that eSTG programs can be 
translated interchangeably into other languages (see Methods). Instead, the suggested eSTG 
language formalism allows a simpler description and specification of complex stochastic 
dynamics of individual entities. As demonstrated by the host of examples provided, these 
may include population level feedback from the current system’s state (either population size, 
internal or external factors) onto the rates and probabilities of the different species. In 
addition, eSTG, as a lineage grammar also enables the representation and analysis of 
historical events including those of extinct sub-lineages and transitional time points. 
Derivation trees produced by simulations can be examined for consistency with specific 
biological hypotheses [22,30], so that eSTG models can be validated or falsified on the basis 
of the trees that they generate. 

The language can also be used as a basis for inference and learning of the system’s governing 
rules, described in the eSTG formalism as the transition rules and the underlying rates and 
probabilities as functions of the system’s state. The question of parameter inference from 
biological data is an active area of study [31-34]. In our context, biological knowledge 
inferred from experimentally-obtained trees [22,30,35-43] could be used in order to infer the 
corresponding lineage grammars [17,44,45]. This will allow the use of computers and 
computing resources in order to gain new biological insights. This is a great challenge, 



especially given noise and hidden variables, and is a subject of our future work. We hope that 
the development of theoretical models and tools, such as the one presented here, will 
facilitate research in this important direction. 

Methods 

Stochastic simulation 

eSTG programs can be naturally simulated by the well-known Gillespie stochastic simulation 
algorithm [6]. Gillespie's implementation uses the rates of all possible reactions and chooses 
stochastically the next reaction by assuming that the time to the next reaction is exponentially 
distributed with rate parameters corresponding to the reaction rates. 

A rule of the form: 

/ :→ %��'=;a%�+'=Da… a%�)b�'	=cd;a%�)'=c 

can be converted into n separated reaction rules: 

/ :∙=e�� �f, ∀! � 1. . h 

and thus existing implementations of the Gillespie algorithm can be used to determine the 
next reaction and the time interval. Applying these rules to build the lineage tree is described 
in the Operational semantics section. 

The code that was used to generate the examples in this paper will be made available as an 
open source tool and is currently under preparation for publication. 

Equivalence and conversion to other languages 

In this section we compare the expressiveness of eSTG to 4 other families: 

1. maODE: Ordinary Differential Equations arising from mass-action kinetics. 
2. maCRN: Chemical Reaction Networks with mass-action kinetics. 
3. gCRN: Chemical Reaction Networks with general rate kinetics. 
4. U-gCRN: Unimolecular Chemical Reaction Networks with general rate kinetics. 

An maCRN is a chemical reaction network where each reaction has an associated rate 
constant, and where the instantaneous rate of a reaction is determined by the product of the 
rate constant with the instantaneous concentrations of the reagents. It is known that an 
maCRN under that mass-action law produces a system of ODEs with a special structure, here 
called an maODE system. In an maODE system each right-hand-side of each differential 
equation for species has the form of a polynomial over the set of species, where each 
monomial with a negative sign has s as a factor (raised to some non-zero power). Conversely 
each maODE determines a canonical maCRN that has that maODE as its kinetics. Therefore 
there are canonical translations back and forth between maODEs and maCRNs [46]. 



A gCRN is instead a Chemical Reaction Network where each reaction has an associated rate 
function from current or past system states to changes of concentrations. The instantaneous 
rate of a reaction is then given immediately by its rate function without further 
considerations; the class of ODEs that a gCRN may generate depends on the class of rate 
functions that are available. 

A U-gCRN is a special case of a gCRN where all the reactions are unimolecular. For 
sufficiently powerful rate functions it is possible to have a (nominally) unimolecular reaction 
depend on the concentrations of other species, so that U-gCRN is in fact as expressive as 

gCRN. For example, an maCRN reaction / :→i can be translated to the gCRN reaction 

/:jk,l���i where [A] is the instantaneous concentration of A, and an maCRN reaction / F i :→� 

can be translated to a gCRN reaction / F i:jk,ljkml������� or to two U-gCRN reactions /:jk,ljkml������� 

and i:jk,ljkml������0. 

The family of population dynamics specifications that can be described using basic eSTG is 

equivalent to U-gCRN. A U-gCRN reaction / :→i� F⋯F i) can be translated into an eSTG 

reaction / :→%i�, … , i)'�., and conversely an eSTG reaction / :	→�i�,�, … "o;| … |�i),�, … "oc 

can be translated into a set of U-gCRN reactions /:∙o;���i�,� F⋯ ,…	, /
:∙oc���i),� F⋯. 

The U-gCRN form of eSTGs implies that one must make choices in modelling: the main 
species that are the focus of a model, and occur in the left-hand side of productions, will be 
reflected in the generated lineage trees, but auxiliary species that appear only in the rate laws 
will not, even when those would be considered as equal in a model based on bimolecular 
interactions. 

Operational semantics 

We will start with basic definitions for the semantics of Lineage Trees. Paths in a tree are 
represented as finite sequences of natural numbers π = n1, …, nm ∈ N* (star means finite 
sequence, with nil as the empty sequence, and as sequence concatenation). Each number n in 
a path represents the child of a node, starting from the root. Nodes in a tree are labeled by an 
alphabet S0 = S ∪ {0} consisting of species in S and a distinguished symbol (the "dead" leaf). 

Definition: a tree is a partial function in ℕ* → S0, from paths in ℕ* to label nodes in , whose 
domain is non-empty and prefix-closed (that is, L(π1, π2) defined ⇒ L(π1) defined). 

Definition: A leaf in a tree is a maximal path - one such that L(π) is defined and there is no π ' 
≠ nil where is defined. We also say that π, B is a ( -labeled) leaf in if π is a leaf in and L(π) = 
B. 

Definition: A lineage tree is a tree where each path π such that L(π) = 0 is a leaf. is the set of 
such trees. 

By these definitions, a tree is a non-empty set of paths and each node has a "unique label" 
which is the path π that leads to it. A root-only tree is a function from nil to some species . 



Next, we use the -calculus notation for the definitions of lineage tree operators (if then we 
write f = λx. b). We use the element for partially defined functions: 

1. The lineage tree with just one dead leaf: 
 

0 � t�. !�	� � h!u	B`8h	0	8uv8	wh@8�	
 
2. The lineage tree with root / ∈ � and children xf, for / y 0 and h z� 0: 
  

( )
1

1

( ,..., ) 

.       1,   ...   

,   ( )  

n

n

A L L

x if x nil then A else if x then L else if x

n then L else undef

λ π π
π π

=
= =

=  
 
Where for n = 0, A = A() is a "live" leaf. 

3. The leaf-extension operator L, π, A ⊲ (B1, … Bn), which is defined if π is an -labeled live 
leaf in (L(L(π) = A ≠ 0)), and , and B1 … Bn ∈ S0: 

 

1, , ( 1,... ) .  ,1  ,  ...,   

,   ,   ( )n

L A B Bn x if x then B else if x

n then B else L x

π λ π
π
= =

=
<

 

For example, by the above definitions a tree with root and with children B1, …, Bn which are 
all leaves can be written as the expression , representing a function that given the sequence 
nil returns the label C, given the sequence returns the label Bi, and is otherwise undefined. 
Similarly, the expression C(), nil, C ⊲ (B1, …, Bn) represents the tree C() where the leaf is 
extended into a node with children ; this is then the same as the tree C(B1(), …, Bn()). 

A collection of eSTG reactions describes a way of generating and transforming lineage trees. 
We now describe how each eSTG reaction transforms a lineage tree into new lineage trees. 
More precisely, since eSTG reactions are stochastic/probabilistic, how each reaction produces 
a measure of new lineage trees, where each new lineage tree is associated with its rate of 
occurrence. 

Definition: A measure is a function from finite tuples of lineage trees to non-negative reals, 
with operators: 

 ( )1 1, ( , , ) .  ( , , )    0n nd r L L x if x L L thenr elseλ… = = …  

the singleton measure, which measures as r and everything else as 0; 

 1 1. ( ) ( )m mM M x M x M xλ+…+ = +…+  

the sum measure, with ; 

 ( ) ( )1 1, ,  .  , , , ,   , ,   0n nL B M x if x L B L L thenM L L elseπ λ π= = … …� �  



the leaf-extension measure, where π, B is a leaf in L; this is a function in . This is the measure 
such that any extended tree of the form for some L1, …, Ln receives the measure M(L1, …, 
Ln). 

For example, (), , ( ( , ( (), ()))  ( , ()) )  ( , ( (), ()))  ( , ( ()))  C nil C d r D E d s F d r C D E d s C F+ = +�

because ( (), ())C D E  has the shape (), , ( (), ())C nil C D E�  and so it receives measure , and 
C(F()) has shape (), , ( ())C nil C F�  and so it receives measure s. 

We are now ready to define the effect of a set of eSTG reactions S on lineage trees. This is 
given as a reduction relation R between lineage trees and measures. We write (L reduces to 
M) for (L, M) ∈ R, where R is defined as the smallest relation satisfying the following rule: 

{ } { }
( ) ( )

1

 

1 p p

1 1

      ,      

  | |      (     ) 

  , , ( , , )
m

r

m

m m

if L is a lineagetreeand Bis aleaf in L

and B M M is a reactionin theonlyone for B

then L L B d r p M d r p M

π

π

→ …

→ ⋅ +…+ ⋅<

S  

This rule prescribes, for example, how to carry out a simulation of a set of eSTG reactions 
given an initial lineage tree: at each step apply the rule above to all applicable reactions and 
tree leaves, sum all the measures so obtained, and sample a new lineage tree according to the 
resulting measure. 
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